Optimal Heat Kernel Estimates

نویسندگان

  • Bernd Thaller
  • Michael Loss
چکیده

Sharp smoothing estimates are proven for magnetic Schrr odinger semigroups in two dimensions under the assumption that the magnetic eld is bounded below by some positive constant B 0. As a consequence the L 1 norm of the associated integral kernel is bounded by the L 1 norm of the Mehler kernel of the Schrr odinger semigroup with the constant magnetic eld B 0 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heat kernel and its estimates

After a short survey of some of the reasons that make the heat kernel an important object of study, we review a number of basic heat kernel estimates. We then describe recent results concerning (a) the heat kernel on certain manifolds with ends, and (b) the heat kernel with Neumann or Dirichlet boundary condition in Euclidean domains.

متن کامل

Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps

We investigate the relationships between the parabolic Harnack inequality, heat kernel estimates, some geometric conditions, and some analytic conditions for random walks with long range jumps. Unlike the case of diffusion processes, the parabolic Harnack inequality does not, in general, imply the corresponding heat kernel estimates.

متن کامل

Heat kernel estimates for the Dirichlet fractional Laplacian

Abstract. We consider the fractional Laplacian −(−1)α/2 on an open subset in Rd with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian inC1,1 open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C1,1 open set. Our results are the first sharp twoside...

متن کامل

Dirichlet Heat Kernel Estimates for Subordinate Brownian Motions with Gaussian Components

In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels, in C open sets D in R, of a large class of subordinate Brownian motions with Gaussian components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we obtain sharp two-sided estimates for t...

متن کامل

Discrimination of time series based on kernel method

Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009